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ABSTRACT
High-throughput genomic technology has rapidly become
a major tool for the study of breast cancer. Gene
expression profiling has been applied to many areas of
research from basic science to translational studies, with
the potential to identify new targets for treatment,
mechanisms of resistance and to improve on current tools
for the analysis of prognosis. However, the sheer scale of
the data generated along with the number of different
protocols, platforms and analysis methods can make
these studies difficult for clinicians to comprehend.
Similarly, computational scientists and statisticians that
may be called upon to analyse the data generated are
often unaware of the processes involved in sample
collection or the relevance and impact of genetics and
pathological characteristics. There is a pressing need for
better understanding of the challenges and limitations of
microarray approaches, both in experimental design and
data analysis. Holistic, whole-genome approaches are still
relatively new and critics have been quick to highlight non-
overlapping results from groups testing similar hypotheses.
However, it is often subtle differences in the experimental
design and technology that underpin the variation between
these studies. Rather than indicating that the data are
meaningless, this suggests that many findings are real, but
highly context dependent. This review explores both the
current state and potential of bioinformatics to bring
meaning to high-throughput genomic approaches in the
understanding of breast cancer.

The breast cancer field has been quick to embrace
the potential of high-throughput genomic
approaches.1 The attraction of these methods is
readily apparent given the opportunity to simulta-
neously measure variation in thousands of DNA
sequences, mRNA transcripts, peptides or metabo-
lites (fig 1) to give us a holistic view of the
machinations of cellular processes. Breast cancer is
an extremely complex disease, with many risk
factors ranging from unavoidable genetic predis-
position through to lifestyle choices such as diet
and exercise.2 In addition, the breast is a difficult
tissue to study, as it is composed of several cell
types and undergoes structural changes during the
menstrual cycle, pregnancy and ageing.2 From
commonly used clinicopathologiocal characteristics
(such as tumour size, lymph node involvement,
subtype, grade and oestrogen receptor (ER) expres-
sion) it is clear that breast cancer is a highly
heterogeneous disease. Molecular profiling has con-
firmed this and highlighted the underlying complex-
ity3–5 and it is therefore hardly surprising that
different tumours respond to different treatments.

This review aims to highlight the importance of
reasoned experimental design and sound statistical

analysis, illustrating the many possible confound-
ing factors and limitations that need be taken into
account when considering the value of high-
throughput studies. It will focus primarily on gene
expression profiling, but many of the issues raised
are also applicable to other ‘‘-omic’’ technologies,
such as array CGH, miRNA and proteomics array
based methods (fig 1).

EXPERIMENTAL DESIGN
The shift in approach from measuring the level of a
single transcript or protein in a cohort of patients
to simultaneously measuring the levels of thou-
sands of genes or proteins brings with it a need to
better understand the concepts of multiple testing
and false discovery rates.6 With conventional
approaches, the level of a single gene or protein is
measured to prove or disprove a hypothesis. One of
the attractions of high-throughput methods is that
they are data driven rather than hypothesis driven,
so are not limited by prior knowledge. While these
methods can be effectively used to prove or
disprove a given hypothesis, there real value is in
generating new ones. A consequence of having
many more features (genes, transcripts, single
nucleotide polymorphisms, peptides, etc) than the
number of samples is that many of the apparently
differentially expressed features may be due to
chance, rather than real biological differences.
Considering the heterogeneous nature and varia-
bility of samples it should not be unexpected that
subgroups of data do not separate into well-defined
clusters in low dimensional visualisations (fig 2).
For a more detailed review of issues of dataset
dimensionality and multiple testing the reader is
directed to the review of Clarke et al.6 Variation
between gene signatures of the most changing
genes can arise from differences in cohort selection
(biological variables) and experimental bias (tech-
nical variables).

BIOLOGICAL VARIABLES
When the objective of a microarray experiment is
to identify genes that are differentially expressed
between groups of ‘‘experiment’’ and ‘‘control’’
samples it is essential that the phenotype under
investigation (treatment, overexpressed gene,
tumour or patient characteristic) represents the
largest source of variation. If this is not the case,
then the results will be compromised due to
confounding factors (whether known or
unknown). One way to minimise this potential
problem is to make sure the two groups of samples
being compared are as similar to each other as
possible in every respect except the phenotype
under test. An alternative approach is simply to use
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huge numbers of samples, increasing the likelihood that the
experimental variable is the only consistent difference between
the two groups. Due to the high cost of these approaches and
the scarcity of samples, the former is often the only feasible
approach.

With cell line experiments it is relatively easy to minimise
sources of variation by preparing samples in exactly the same
way and following strict protocols to ensure that replicates are
highly similar to each other. In this case, relatively few
replicates are required to distinguish between the ‘‘experimen-
tal’’ and ‘‘control’’ samples (fig 2A). However with primary
patient samples, molecular heterogeneity is a much bigger issue.
Gene expression has been shown to be affected by so many
variables that either highly specific entry criteria or large cohorts
are required to distinguish between the ‘‘experimental’’ and

‘‘control’’ samples (fig 2B). An alternative approach, suited to
looking for consistent changes in different individuals is to
utilise ‘‘matched samples’’ of tumour7 or normal tissue8 taken
from the same individual before and after an intervention
(fig 2C). These paired studies have increased statistical power
and the potential to predict which individuals will respond to
the intervention. Another important consideration is the tissue
composition of tumour material that is used as the starting
point for extracting DNA, RNA, etc, for molecular analysis,
with many studies now employing laser capture microdissec-
tion (fig 3). The need for such precision is highlighted by the
reanalysis of the ‘‘normal-like’’ subtype described by Perou’s and
Sorlie’s groups, in which histopathological examination of
tumor samples categorised as ‘‘normal-like’’ revealed normal
tissue contamination.3–5 9 10

Figure 1 Summary of different types of
high-throughput microarray and what
they measure. There are now many
different types of microarray that enable
the measurement of many molecular
variables in a holistic, systematic fashion.
CGH, comparative genomic hybridisation;
ChIP-chip, chromatin immunoprecipitation
microarrays; GC-M, gas chromatography
mass; NMR, nuclear magnetic resonance;
SAGE, serial analysis of gene expression;
SNP, single nucleotide polymorphism;
spec, spectrometry.

Figure 2 The level of variation across replicates or samples determines the numbers required to identify significantly differentially expressed genes
that distinguish subgroups. The example plots represent hypothetical overall transcriptome similarity of samples by two-dimensional principle
components analysis or multidimensional scaling. (A) The grey circle and black square replicates tightly cluster together, but are clearly distinct from
each other. (B) The grey circles are less clearly separated from the black squares so greater numbers are required to identify consistent differences with
the same level of confidence as in (A). (C) Matched samples, eg, before (filled symbols) and after (open symbols) measurements, can more easily
identify common changes in expression relating to a particular treatment or procedure.
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TECHNICAL VARIABLES
Although the underlying principles of annealing and hybridisa-
tion of complementary sequences are the same for all gene
expression approaches, there are some fundamental differences
in the design and production of the microarray platforms. Early
microarrays tended to be produced in individual laboratories
from PCR products from cloned cDNA or synthetic oligonu-
cleotides printed onto glass slides.11 12 The technology has
rapidly evolved and expanded to profile many other variables
including genomic DNA mutations and copy number, methyla-
tion and microRNAs, protein antibody or tissue and cell lysates
(fig 1). Availability of commercial microarrays has been
facilitated by several companies including Affymetrix (Santa
Clara, California, USA), Agilent Technologies (Santa Clara,
California, USA) and Illumina (San Diego, California, USA)
among others, improving comparison and consistency of results
to some degree within studies using each particular platform.

The majority of peer-review journals have made it a
prerequisite for publication that gene expression datasets are
made publicly available, and this is facilitated by data
repositories such as ArrayExpress13 and NCBI Gene Expression
Omnibus.14 In addition to the raw data, authors have to supply
details of the samples, platform and protocols used according to
MIAME (Minimum Information About a Microarray
Experiment) guidelines.15 The requirement to make data
available has improved the transparency of microarray studies
and enabled meta-analysis. However, the many steps involved
in the workflow of a typical microarray experiment (fig 3) often
vary between studies and this can introduce bias. Although the
lack of overlap in lists of significant genes from apparently
similar studies has been well documented,16 these discrepancies
can usually be attributed to differences in the underlying
technology such as probe sequence design or differences in the
way the experiments were conducted. Nevertheless, Sorlie and
coworkers9 demonstrated that breast cancer subtypes are
distinguishable at the unsupervised level (see fig 4) across three
different microarray platforms. Where there is variation

between the most differentially expressed genes identified by
each array platform, there is normally a highly significant
overlap at the pathway level. It is important to remember that
all microarray results are highly dependent upon the informa-
tion used to design them in the first place. A re-mapping
exercise of microarray probesets with the latest genome
annotation revealed a 30–50% discrepancy in the genes
previously identified as differentially expressed, regardless of
the analysis method employed.17

SUBTYPING, CLASSIFICATION AND PROGNOSIS
Breast tumours can be segregated by many methods of
histopathology and molecular pathology in order to predict
prognosis or responsiveness to various therapies.18 There have
been three broad approaches to analysing gene expression
microarrays in the breast cancer field (fig 4). The first of these is
an unsupervised method of analysis, in which tumours are
clustered into sub-groups by an ‘‘intrinsic’’ gene set that reflects
differences in gene expression between tumours rather than
within tumours,3–5 9 without using selection criteria. The most
striking molecular differences between luminal and basal-like
subtypes have repeatedly been identified and validated with
different technologies and platforms.5 19–22 Identification of
‘‘molecular apocrine’’ tumours21 and further subdivision of the
ER-negative tumours into at least five different subtypes23 has
also been performed. The molecular subtypes identified are
associated with significantly different clinical outcomes,4 10

which are likely to best respond to different treatment
approaches. A phase II trial of anti-androgen therapy in ER/
progesterone receptor (PR)/Her2-negative, androgen-positive
tumours derived from this type of study is now underway.

The second two methods utilise supervised approaches based
upon individual clinical follow-up data or characteristics of
tumour biology such as ER status, grade or proliferation17 (see
fig 4). The lack of overlap (three genes) between the 70-gene
signature of the Amsterdam group24 25 (cDNA arrays) and the
76-gene signature of the Rotterdam group26 27 (Affymetrix
oligonucleotide arrays) has been claimed as evidence that
genomic approaches based upon follow-up data are unreliable.
But logically, the heterogeneity demonstrated by unsupervised
approaches would preclude replicate findings from two modest-
sized studies of different groups of samples. The disparity
between the signatures can potentially be accounted for when
examining the variations in the inclusion criteria (age, lymph
node status, diameter of tumour, adjuvant treatment, etc), the
platform (cDNA or oligonucleotide arrays, or quantitative
reverse transcription PCR (qRT-PCR)) and different data
analysis methods used in each study. Despite the clear
differences in approach and a lack of consensus in the gene
signatures generated, all three of the broad approaches outlined
above (fig 4) have a similar capacity to predict prognosis.
Evaluation of several signatures with a single test dataset
demonstrated a high degree of overlap in the outcome predicted
for individual patients.20

REPRODUCIBILITY, VALIDATION AND DATASET-SPECIFIC BIAS
The genes that make up a gene expression signature are by their
nature dependent upon: patient and tumour characteristics,
array platform, normalisation method, and statistical thresholds
for gene selection or the classification algorithm employed
(fig 3). Using a particular dataset to generate a predictive profile
has its own inherent bias based upon its attributes. Ein-Dor et al
demonstrated that many different but equally predictive lists of

Figure 3 Overview of key steps in a microarray experiment. Biological
and technical variables are introduced at many stages, and these will all
have an impact on the final results. It is important that all these steps are
clearly documented. FDR, false discovery rate; LCM, laser capture
microdissection; QC, quality control.
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70 genes can be produced simply by changing the members of
‘‘training’’ and ‘‘test’’ sets.28 It seems inevitable that gene
signatures will perform less well with validation datasets than
the ones used to generate the profile. A follow-up study to the
76-gene Rotterdam signature identified strong time dependence
of the signature when validated with a cohort with longer
median follow-up time (14 years) compared with the original
study (8 years).26 Many patient characteristics are known to
affect gene expression (and other tumour features), including
age29 and race.30 Anders et al demonstrated that breast cancer
arising in younger women was more likely to involve PI3K, Myc
and b-catenin, whereas the activation of Src and E2F deregula-
tion was more associated with tumours in older women31 Only
genes that are clearly mechanistically different between
particular groups of patients will be identified reproducibly
between similarly defined cohorts.

Using a series of repeated validation datasets comparing
breast cancer and normal breast cell lines (MCF7 and MCF10A),
we recently examined the variability between datasets gener-
ated using different amounts of starting RNA, alternative
protocols, different generations of Affymetrix GeneChip or
scanning hardware. We demonstrated that systematic, multi-
plicative biases are introduced at the RNA, hybridisation and
image-capture stages of a microarray experiment.32

DATA INTEGRATION AND META-ANALYSIS
Validation of new results with independent data is essential to
establish that research findings are indeed ‘‘real’’. For example,
meta-analyses of multiple experiments using different platforms
has resulted in new predictive signatures that perform as well or
better than the platform specific signature.33 34 These

approaches remove the inherent bias of a single microarray
platform and are able to concentrate on genes that are
consistently differentially expressed, regardless of the technol-
ogy used. However, cross platform meta-analyses may be
somewhat limited by the number of common genes repre-
sented. Cross platform normalisation35 and distance weighted
discrimination36 methods have been put forward for comparing
data from different types of microarrays.

One way to overcome the heterogeneity described above is to
increase the size of studies by combining datasets; however this
can make the problem of analysing the data even more
daunting. The many breast cancer gene expression datasets
now in the public domain represent a valuable resource for
meta-analysis. However, dataset-specific bias precludes integra-
tion of published studies at the raw intensity level without
some form of correction method (fig 5). In our study, simple
batch mean-centring was sufficient to reconcile validation cell
line and published breast tumour datasets, outperforming
distance-weighted discrimination36 and generating similar
results to ComBat, an empirical Bayes method to adjust for
batch effects.37 Several meta-analysis studies have now been
published, generally validating previous findings, emphasising
‘‘real’’ effects, consensus and improving clarity.34 38–41

We recently demonstrated that integrating up to six
published breast cancer Affymetrix GeneChip datasets can
increase the accuracy of prognosis prediction and that this can
be improved further by removing systematic, multiplicative
bias.32 The most accurate prognosis predictions are generated
when the test sets closely share the patient and tumour
characteristics of the training sets. An alternative approach to
building ever larger combined datasets representing the whole

Figure 4 Concordance between different approaches to prognosis prediction. Regardless of the strategy used to identify lists of significantly
differentially expressed each method can be used to predict prognosis. These profiles are inter-related and may be more accurate than existing single
markers. ER, oestrogen receptor.
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breast cancer population would be to concentrate on generating
gene expression classifiers for separate clearly defined groups of
patients based on commonly used clinicopathological para-
meters. However, strict entry criteria would severely restrict
the number of suitable patients/tumours eligible for inclusion
and this approach could take no account of possible unknown
confounding factors. In clinical practice, single sample
predictors10 are required, applicable to large groups of patients
and our work strongly suggests that these will be best generated
from the largest possible cohorts (or integrated datasets). It is
essential that researchers are aware that differences in
dataset composition can also have dramatic effects on meta-
analysis and it may not always be appropriate to combine
datasets if they have been subject to different entry criteria or
treatments.32

WILL HIGH-THROUGHPUT APPROACHES MAKE IT TO THE
CLINIC?
Clinicians have to chose the most appropriate treatment for
individuals; however many of the disease parameters currently
used are qualitative rather than quantitative. Prognostic models
such as The International Consensus Guidelines of St Gallen42

and the Nottingham Prognostic Index43 are used to guide
treatment decisions. While these models may be able to predict
proportions of the population in which an outcome may occur

with reasonable accuracy, they cannot identify in which
women the outcome will occur; the inevitable consequence of
this is either overtreatment or inadequate treatment. Following
the National Comprehensive Cancer Network guidelines can
result in unnecessary chemotherapy for up to 80% of some of
the better prognosis subgroups. For molecular signatures to have
any true value in treatment selection they must be reliably
validated to outperform or add value to existing clinical
guidelines.1 Traditional classifications of tumours may provide
clear-cut treatment options in high-risk and low-risk cases, but
often tumours fall into an ‘‘intermediate’’ group; it is in these
borderline cases where improvements are most urgently
required. In these cases the ‘‘safe’’ option is to overtreat,
benefiting a relatively small minority of cases and exposing
the rest to side effects unnecessarily. Conversely, a more
conservative approach may avoid unwarranted treatment and
additionally reduce costs, but some women that would benefit
may go untreated. Studies that examine links between gene
expression and known prognostic factors such as grade44 and ER
status45 may be beneficial for this intermediate group.

Two clinical tests based upon gene expression profiling
studies are already commercially available and being evaluated
in large multicentre, multinational trials. The TAILORx study,
sponsored by the National Cancer Institute, will test
OncotypeDX,46 a 21-gene qRT-PCR recurrence score algorithm

Figure 5 Dataset-specific bias must be removed for integration of gene expression data.32 Combining breast tumour gene expression profiles
generated by two published studies. (A) Before mean batch-centering. (B) After mean batch-centering. Hierarchical clustering of tumours based upon
640 probesets representing Sorlie et al5 ‘‘intrinsic’’ genes. Thumbnails show all 640 probesets. (i) Tumours classified by Richardson et al22: red, basal-
like; blue, non-basal like, pink, BRCA1; tumours classified by Farmer et al21: red, basal; blue, luminal; green, apocrine. Clusters of genes associated with
the ‘‘Sorlie subtypes’’ are highlighted as follows: (ii) ERBB2 gene cluster, (iii) luminal A gene cluster, (iv) basal gene cluster. (v) Centroid prediction was
used to assign the tumours to the five Norway/Stanford subtypes: basal (red), luminal A (dark blue), luminal B (light blue), ERBB2 (purple), normal-like
(green), unassigned (grey).
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(derived from gene expression array studies) that can be
performed on formalin-fixed, paraffin-embedded tissue. The
study will enrol more than 10 000 women with hormone-
positive (ER positive and/or PR positive), ERBB2-ngative and
node-negative breast cancer to determine which women should
receive adjuvant chemotherapy in addition to hormone therapy.
In a study of archival material from 4964 lymph-node-negative
breast tumours that were not treated with chemotherapy, the
Recurrence Score was strongly associated with risk of breast
cancer death among ER-positive, tamoxifen-treated and
untreated patients.47 In the B-20 study, recurrence score not
only quantified the likelihood of breast cancer recurrence in
women with node-negative, ER-positive breast cancer, but also
predicted the magnitude of chemotherapy benefit.48 However,
in a study of 149 patients who were not treated with adjuvant
therapy, the 21 gene-based recurrence score was not predictive
of distant disease recurrence, highlighting the importance of
cohort selection.49 OncotypeDX has been added to the list of
approved American Society of Clinical Oncology markers50 and
it is anticipated that 60 000 OncotypeDX tests will be
performed in 2008. With tests costing thousands of dollars this
could have implications for health service providers, although
this would be set against reducing the cost of unnecessary
treatment.1 The US Food and Drug Administration has
approved the Mammaprint clinical test that was developed by
Agendia (Huntington Beach, California, USA) from the 70-gene
signature.25 While the assay has been validated by this group,24 51

concerns regarding the design and statistical analysis used to
derive the original 70-gene signature have been raised28 52 These
issues have largely been incorporated into the prospective
MINDACT (Microarray in Node-Negative Disease May Avoid
Chemotherapy) clinical trial of 6000 patients.53 54 The
TRANSBIG consortium also used the same 70-gene validation
samples to evaluate two other gene expression signatures with
potential prognostic value that were developed, using the
Affymetrix microarray platform: the 76-gene Veridex/
Rotterdam signature27 55 and the Genomic Grading Index.44

This retrospective validation was recently published,26 conclud-
ing that the three signatures performed in a similar way, all
being superior to the classical clinicopathological methods.

One consequence of moving towards ‘‘individualised treat-
ment’’ is that it can be difficult to identify appropriate numbers
of patients with similar characteristics that have been exposed
to the same treatment regimen to adequately statistically power
a study. While high-throughput expression profiling methods
are not yet fully evaluated, they clearly have great potential that
needs to be carefully validated before they become standard
prognostic tools. In the meantime, they are generating a large
amount of valuable data that are gradually improving our
understanding of the molecular changes that are associated with
breast cancer development, progression and treatment.

CONCLUSIONS
Issues of cohort selection and choice of appropriate analysis
methods are central to breast cancer studies using high-
throughput genomic approaches. Ultimately, bioinformatics
seeks to bring meaning to biological data so that it can be
comprehended in the context of current knowledge, allowing
new hypotheses to be generated and tested.
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