Gene of the month: Interleukin 6 (IL-6) ======================================= * Parvin Ataie-Kachoie * Mohammad H Pourgholami * Des R Richardson * David L Morris ## Abstract The *Interleukin 6 (IL-6)* gene encodes the classic proinflammatory cytokine IL-6. It is also known as interferon-β2 (IFN-β2), B cell stimulatory factor-2 and hybridoma/plasmacytoma growth factor. IL-6 is a multifunctional cytokine with a central role in many physiological inflammatory and immunological processes. Due to its major role in initiation as well as resolving inflammation, deregulation of IL-6 is a mainstay of chronic inflammatory and autoimmune diseases. Additionally, IL-6 has been shown to be implicated in pathogenesis of many human malignancies. Thus, a better understanding of IL-6 and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target. This short review focuses on the structure, regulation and biological activities of IL-6. In addition we discuss the role of IL-6 in diseases with inflammatory background and cancer and also the therapeutic applications of anti-IL-6 agents. * Inflammation * Cancer Research * Cell Biology ## Structure and regulation of interleukin 6 The human gene for *Interleukin 6 (IL-6)* was cloned and reported by Hirano *et al* in 1986. It is mapped to 7p15–p21 chromosome and consists of five exons and four introns.1 The *IL-6* gene encodes the 212 amino acid length IL-6 precursor protein including a 28 amino acid signal sequence and a 184 amino acid mature segment.1 ,2 Mature IL-6 is a single-chain glycoprotein characterised with a typical four-helix bundle structure made up of four long α-helices arranged in an up-up-down-down topology. IL-6 molecular masses vary from 21 kDa to 28 kDa depending on the cellular source and also post-translational modification such as N-/O-glycosylation and phosphorylation.3 Due to the rapid plasma clearance, IL-6 levels are largely regulated at the expression level.4 IL-6 is also regulated through activation of transcription factors nuclear factor (NF)-kB, NF-IL-6 (also known as CCAAT-enhancer-binding proteins or C/EBP), activator protein-1, cyclic Adenosine 3',5'-monophosphate (cAMP) response element binding protein, Fos/Jun and glucocorticoid receptor.5 ,6 IL-6 transcription can be inducted by second messengers, bacterial lipopolysaccharides, viruses, cytokines such as IL-1 and TNF-α and growth factors such as epidermal growth factor, platelet-derived growth factor and transforming growth factor-β.7–9 Polymorphisms in the promoter region of *IL-6* gene may also result in variation of transcription and expression of this cytokine. Available data support the role of a G/C single nucleotide polymorphism (replacement of a nucleotide with another one) at the promoter 174 of the *IL-6* gene in controlling the *IL-6* gene transcription rate and consequently its circulating levels.10–12 Two phenotypes for this polymorphism have been identified: the 174 G/G and 174 G/C genotypes as the high-producer phenotype; and the 174 C/C genotype as the low-producer phenotype.10 ,12 The 174 G/C phenotype has been reported to be associated with the diseases with inflammatory background such as juvenile chronic arthritis,10 Alzheimer disease,13 type 2 diabetes,14 atherosclerosis,15 osteoporosis,16 cardiovascular diseases,17 ,18 and also multiple cancers including hepatocellular,19 colorectal,20 prostate,21 ovarian22 and breast cancer23 as well as Hodgkin's lymphoma24 and neuroblastoma.25 ## Interleukin 6 biological activities IL-6 is a classic proinflammatory cytokine produced by a variety of cells, such as T and B lymphocytes, fibroblasts, monocytes, keratinocytes, mesangial and endothelial cells; and several tumour cells.26 It regulates various physiological processes, including acute phase response, inflammation, immune response, host defence mechanisms, haematopoiesis and cellular growth.27 *IL-6* induces production of a number of positive acute phase proteins such as serum amyloid A, C reactive protein, leading to a strong pyrogenic activity.27 It is involved in initiation and maintenance of inflammation by facilitating neutrophil trafficking to the inflammation site,28 leading to production of a number of inflammatory mediators, such as cytokines, prostaglandins, reactive oxygen species and proteases.29 It also regulates T lymphocytes activation and differentiation.30 Besides, by promoting B lymphocytes maturation, *IL-6* stimulates the synthesis and secretion of immunoglobulins including IgM, IgG and IgA.27 ,31 In haematopoiesis, *IL-6* along with IL-3 induce the formation of blast cell colonies. Moreover, it supports the differentiation of macrophage and megakaryocyte.32 *IL-6* is known as a positive growth regulator, which along with IL-1, IL-3, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, stimulates the proliferation and differentiation of myeloid cells.33 It induces the production of vascular endothelial growth factor (VEGF) and is involved in neoangiogenesis.34 ## Interleukin 6 receptor system and signalling cascades IL-6 transmits its signals through interacting with a receptor complex consisting of the ligand-binding glycoprotein termed IL-6R (also called CD126) and the signal-transducing component gp130 (also called CD130). There are two types of IL-6R, that is, cell membrane IL-6 receptor (IL-6Rα) with low affinity that forms a complex with gp130 after binding with IL-6 to start the intracellular signal (classical signalling), and a soluble IL-6 receptor (sIL-6R) which binds with IL-6 and then with the membrane receptor β chain—gp130 leading to the signal transduction (trans-signalling).26 ,35 Under normal conditions, IL-6R is only expressed by selected cells including T and B lymphocytes, monocytes, macrophages, neutrophils and hepatocytes.36 However gp130 which is shared between all members of the IL-6 superfamily including oncostatin M, IL-11, leukaemia inhibitory factor, ciliary neurotrophic factor and cardiotrophin-1,37 exists ubiquitously on all cells.38 sIL-6R is generated by shedding from membrane-bound IL-6R via limited proteolysis of the ADisintegrin and Metalloproteinases (ADAM) gene family members and also by mRNA alternative splicing.39 sIL-6R mediates IL-6 signalling in cells only harbouring gp130 on their surfaces.40 The signal transduction of IL-6 involves phosphorylation and activation of Janus kinase (JAK) intracellular kinase family members. JAKs phosphorylate the tyrosine residues of the IL-6 receptor, thus allowing the phosphorylation of signal transducer and activator of transcription (STAT3) which possess phosphotyrosine-binding SH2 domains. After phosphorylation, STAT3 forms a dimer which is then translocated to the nucleus to regulate the expression of several genes leading to the induction of cell growth, differentiation and survival.41 The termination of this signalling pathway is mediated by endogenous inhibitors including the suppressor of cytokine signalling and protein inhibitor of activated STAT proteins. These proteins are induced by activated STAT3 in normal cells under normal physiological conditions. In addition to STAT3, phosphorylation of tyrosine 759 of cytokine receptor by JAKs leads to engagement of SH2 domain in PI3K enzyme. Following phosphorylation, this enzyme modifies certain phosphatidylinositides to phosphorylate phosphatidylinositol-4,5-bisphosphate into phosphatidylinositol-3,4,5-trisphosphate. Phosphatidylinositol-3,4,5-trisphosphate in turn phosphorylates and activates serine/threonine kinase Protein kinase (Pk)B/AKT which is recruited to the plasma membrane.42 Activated AKT regulates the activities of several downstream targets to mediate cell growth, differentiation and survival via various signalling pathways.43 IL-6 also activates the small G protein Ras. Ras activation leads to hyper-phosphorylation of Raf (MAPKKK) and an increase in its serine/threonine kinase activity. Raf then phosphorylates and activates Mek (MAPKK) and ERK1/2 (MAPK). Activated ERK1/2 has a variety of nuclear and cytoplasmic substrates which mediate diverse effects depending on cell type, including cell growth stimulation, acute phase protein synthesis and immunoglobulin synthesis.44 ## Interleukin 6 abnormalities ### Interleukin 6 in autoimmune and inflammatory diseases IL-6 is regarded as a central mediator in many autoimmune and chronic inflammatory human diseases including rheumatoid arthritis, multiple sclerosis, Crohn's disease,30 Castleman's disease, adult onset Still's disease,45 Alzheimer disease,46 juvenile idiopathic arthritis47 and multiple sclerosis.48 Overproduction of IL-6 is also documented in many inflammatory-mediated neurodegenerative49 and cardiovascular diseases.50 IL-6 is the chief stimulator of acute phase proteins which are increased in acute and chronic inflammatory diseases.27 IL-6 elicits acute phase reactions and induces differentiation of B cells into antibody-producing cells thus stimulating immunoglobulin secretion and promoting autoantibody production.1 Besides, IL-6 controls T cell proliferation, differentiation and activation to promote a proinflammatory environment.51–53 IL-6 also contributes to acute inflammation via attraction of neutrophils to the site of inflammation.28 Invading neutrophils, in turn, drive IL-6 trans-signalling in resident tissue cells through proteolytic processing of IL-6R. This will lead to a switch from neutrophil to monocyte recruitment via upregulating monocyte-attracting chemokines such as monocyte chemoattractant protein 1 and 2.54–56 Since, recruitment of monocytes to the area of inflammation is the main switch from acute to chronic inflammation, IL-6 is known as a major stimulus of this transition. IL-6 trans-signalling also controls leucocyte infiltration by enhancing the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 on endothelial cells, as well as L-selectin on lymphocytes.57 ,58 Furthermore, IL-6 trans-signalling induces differentiation of monocytes to macrophages via stimulating the expression of macrophage colony-stimulating factor (M-CSF) receptor.59 The induction of neutrophil apoptosis by IL-6 also supports its role in subsiding acute neutrophil infiltration.55 Therefore, IL-6 controls the intermediary factors that are involved in resolving inflammation. A disruption in this control, for example, by persistent production of IL-6, may thus be crucial at the onset of chronic inflammation. Moreover, by inducing mononuclear cell accumulation, angioproliferation and antiapoptotic functions on T cells, IL-6 contributes to an amplifying loop for chronic inflammatory process.60 ### Interleukin 6 in cancer Chronic inflammation is often linked with malignant transformation. IL-6 as a mainstay of chronic inflammation is upregulated in most common human tumours including lung, prostate, breast, pancreatic, renal, gastrointestinal and ovarian cancer; as well as melanoma, lymphomas and multiple myeloma. Elevated serum IL-6 levels is known as an indicator of poor prognosis in most malignancies.61 As the positive regulator and also target of inflammation amplifier, IL-6 gene is coexpressed with many oncogenic genes showing its potential significance in tumour development.62 In fact, IL-6 plays a central role in modifying various tumour behaviours including proliferation and differentiation of tumour cells, apoptosis,63 angiogenesis,64 migration,65 invasion66 and tumour cell attachment thus promoting tumour growth and metastasis.65 ,66 Moreover, by modulating the immune system, IL-6 inhibits the immunogenic response to tumour.67 IL-6 has also been linked with chemotherapy resistance. It is known as a resistance factor in multidrug resistant breast, ovarian and prostate cancer.68 Besides, IL-6 has been implicated in aetiology of cancer related anorexia, cachexia69 and anaemia.70 IL-6 contributes to tumour initiation and progression through activation of several oncogenic pathways including JAK/STAT3, Ras/MAPK and PI3K/AKT signalling pathways (figure 1).71 ![Figure 1](http://jcp.bmj.com/https://jcptest-stage.highwire.org/content/jclinpath/67/11/932/F1.medium.gif) [Figure 1](http://jcp.bmj.com/content/67/11/932/F1) Figure 1 Interleukin 6 (IL-6) and its contribution to tumour development. IL-6 activates oncogenic pathways; JAK/STAT-3, Ras/MAPK and PI3K/AKT resulting in the modification of the transcription of various genes which in turn modify cell behaviours such as proliferation, survival, migration, invasion, angiogenesis and cancer-promoting inflammation causing tumorigenic effects. Aberrant activation of STAT3 leads to modification of the expression of various genes which are regulated by this transcription factor. These include apoptotic-regulatory genes such as *Mcl-1, Bcl-2, Bcl-xl, survivin*,72 *Fas* 73 and *X-linked inhibitor of apoptosis protein (XIAP)*;74 cell survival genes including *cyclins D1, D2 and B1*,75 *myc* 76 and cyclin dependent kinase inhibitor *p21*.75 Persistently activated STAT3 also upregulates the expression of *MMPs*,74 which mediate tumour invasion and metastasis.77 It also enhances the transcription of *VEGF* 34 and *basic fibroblast growth factor (BFGF)* thus promoting tumour angiogenesis.78 Besides, activated STAT3 induces the expression of numerous cancer-promoting proinflammatory cytokines and chemokines including IL-1β, IL-6 and cyclooxygenase 2.79 In addition to STAT3, activation of PI3K/AKT pathway by IL-6 is also known as a crucial oncogenic stimulus in various types of cancer. It promotes tumour cell proliferation and survival through suppression of proapoptotic proteins Bcl-2, BAD (Bcl-XL/Bcl-2-associated death promoter), Mcl-1,80 Bcl-xl, Bim (bcl-2-interacting mediator of cell death), Fas Ligand and p5381 as well as modulation of cell cycle regulatory proteins cyclin D1, myc, checkpoint kinase 1, p27Kip1 and p130Rb2.82 PI3K/AKT also enhances cell growth through activation of mammalian target of rapamycin, a Ser/Thr kinase which promotes protein synthesis through phosphorylation and activation of 4E-BP1 and p70S6Kinase.83 Moreover, PI3K/AKT pathway contributes to activation of NF-κB pathway via phosphorylation of IκB kinase. NF-κB pathway is known as a major regulator of cell survival, angiogenesis and invasiveness.84 The PI3K/AKT signalling pathway induces angiogenesis by upregulating the expression of VEGF in tumour and endothelial cells in a hypoxia inducible factor (HIF)-1-dependent manner.85 Similarly, Ras/MAPK cascade activated by IL-6 regulates a variety of cellular processes including tumour cell proliferation, differentiation, survival and apoptosis.86 Continuously activated MAPK pathway affects cell cycle via modulation of the expression of cyclin D1,87 myc, c-Jun, c-Fos88 and p27Kip1.89 It also influences the activation of the key regulators of apoptosis including Bcl-2, Mcl-1, BAD, Bim and caspase-9.90 Activated ERK also enhances cell migration through rendering epithelioid to fibroblastoid morphological changes in tumour cells via reducing membranous E-cadherin expression.77 Furthermore, Ras/MAPK pathway induces angiogenesis by upregulating VEGF expression.85 Collectively these events lead to tumour cell survival and proliferation, followed by angiogenesis, growth and dissemination of tumours. Recent research has shed light on the importance of interfering with IL-6 as a valuable tool in therapeutics. ## Therapeutic implications of targeting interleukin 6 The huge body of evidence linking IL-6 to various diseases provides a biological rationale for targeted therapeutic investigations. A number of conventional drugs with proved inhibitory effects on IL-6 expression and signalling have been used with much success in IL-6 mediated disorders.26 These include corticosteroids, non-steroidal anti-inflammatory agents and tetracyclines. Besides, monoclonal antibodies (mAbs) directed against IL-6 and IL-6R, are now widely investigated as targeted biological options for the treatment of autoimmune and chronic inflammatory diseases and cancer. Initial studies date back to early 1990s with BE-8 (a mouse mAb to IL-6) in multiple myeloma which was associated with many problems such as short half-life and neutralisation by human antimouse responses.91 Since then several human or humanised mAbs against IL-6 or IL-6R have been developed to overcome these problems. CNTO 136, ALD 518, mAb 1339, CNTO 136 (sirukumab), CNTO 328 (siltuximab) and tocilizumab are among the list. So far, promising results have been obtained using these agents in numerous preclinical and clinical investigations on different autoimmune, chronic inflammatory diseases or cancer (table 1). View this table: [Table 1](http://jcp.bmj.com/content/67/11/932/T1) Table 1 Potential therapeutic implications of anti-IL-6 agents ## Summary IL-6 is a pleiotropic protein which is the regulator of various physiological processes. It is involved in initiation and termination of an inflammatory response under physiological conditions. Hence, aberrant expression of IL-6 results in manifestation of uncontrolled inflammatory responses leading to chronic inflammation. This makes IL-6 a major contributing factor to autoimmune and chronic inflammatory diseases. It is also implicated in initiation and progression of many human cancers. Inhibitors of IL-6 and IL-6 signalling pathways are thus the subject of increasing investigations in the treatment of many inflammatory disorders and cancer. ### Take home messages * IL-6 gene encodes the pleotropic cytokine IL-6 which is a central mediator of various physiological inflammatory and immunological responses. * IL-6 orchestrates acute inflammation through stimulation of acute phase reaction and chemokine-directed leukocyte trafficking and directs transition from acute to chronic inflammation through regulation of leukocyte activation, differentiation, and apoptosis. * IL-6 activates the oncogenic signalling pathways JAK/STAT3, Ras/MAPK and PI3K/AKT that together promote tumour cell survival and proliferation, angiogenesis, metastasis and drug resistance. * IL-6-targeted therapies have shown promising results in a variety of human disorders ranging from autoimmune and chronic inflammatory diseases to cancer. ## Footnotes * Contributors PA-K contributed to conception, design and writing the manuscript. MHP, DRR and DLM contributed to conception, revising and final approval of the manuscript. All authors are equally responsible for the overall content. * Competing interests None. * Provenance and peer review Not commissioned; internally peer reviewed. ## References 1. Hirano T, Yasukawa K, Harada H, et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986;324:73–6. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/324073a0&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=3491322&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1986E709500059&link_type=ISI) 2. Zilberstein A, Ruggieri R, Korn JH, et al. Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines. EMBO J 1986;5:2529–37. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/j.1460-2075.1986.tb04531.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=3023045&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1986E419000016&link_type=ISI) 3. Simpson RJ, Hammacher A, Smith DK, et al. Interleukin-6: structure-function relationships. Protein Sci 1997;6:929–55. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/pro.5560060501&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9144766&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1997WX51600002&link_type=ISI) 4. Castell JV, Geiger T, Gross V, et al. Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur J Biochem 1988;177:357–61. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=3263918&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1988Q819800016&link_type=ISI) 5. Terasaka Y, Miyazaki D, Yakura K, et al. Induction of IL-6 in transcriptional networks in corneal epithelial cells after herpes simplex virus type 1 infection. Invest Ophthalmol Vis Sci 2010;51:2441–9. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaW92cyI7czo1OiJyZXNpZCI7czo5OiI1MS81LzI0NDEiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 6. Baccam M, Woo SY, Vinson C, et al. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/EBP. J Immunol 2003;170:3099–108. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE3MC82LzMwOTkiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 7. Ray A, Tatter SB, May LT, et al. Activation of the human “beta 2-interferon/hepatocyte-stimulating factor/interleukin 6” promoter by cytokines, viruses, and second messenger agonists. Proc Natl Acad Sci USA 1988;85: 6701–5. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODUvMTgvNjcwMSI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 8. Isshiki H, Akira S, Tanabe O, et al. Constitutive and interleukin-1 (IL-1)-inducible factors interact with the IL-1-responsive element in the IL-6 gene. Mol Cell Biol 1990;10:2757–64. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibWNiIjtzOjU6InJlc2lkIjtzOjk6IjEwLzYvMjc1NyI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 9. Park JI, Lee MG, Cho K, et al. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 2003;22:4314–32. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/sj.onc.1206478&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12853969&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000183978900002&link_type=ISI) 10. Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998;102:1369–76. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1172/JCI2629&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9769329&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000076380100011&link_type=ISI) 11. Olomolaiye O, Wood NA, Bidwell JL. A novel NlaIII polymorphism in the human IL-6 promoter. Eur J Immunogenet 1998;25:267. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1046/j.1365-2370.1998.00077.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9615916&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000073782500003&link_type=ISI) 12. Bonafe M, Olivieri F, Cavallone L, et al. A gender--dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 2001;31:2357–61. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/1521-4141(200108)31:8<2357::AID-IMMU2357>3.0.CO;2-X&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=11500818&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000170580500013&link_type=ISI) 13. Licastro F, Grimaldi LM, Bonafe M, et al. Interleukin-6 gene alleles affect the risk of Alzheimer's disease and levels of the cytokine in blood and brain. Neurobiol Aging 2003;24:921–6. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S0197-4580(03)00013-7&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12928051&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000186253200005&link_type=ISI) 14. Vozarova B, Fernandez-Real JM, Knowler WC, et al. The interleukin-6 (-174) G/C promoter polymorphism is associated with type-2 diabetes mellitus in Native Americans and Caucasians. Hum Genet 2003;112:409–13. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12589429&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000182464200012&link_type=ISI) 15. Chumaeva N, Hintsanen M, Pulkki-Raback L, et al. Interleukin-6 gene polymorphism, chronic stress and atherosclerosis: interleukin-6–174 G>C polymorphism, chronic stress and risk of early atherosclerosis in the Cardiovascular Risk in Young Finns Study. J Psychosom Res 2014;76:333–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.jpsychores.2014.01.007&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24630186&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 16. Moura KF, Haidar M, Bonduki C, et al. Frequencies of interleukin-6, GST and progesterone receptor gene polymorphisms in postmenopausal women with low bone mineral density. Sao Paulo Med J 2014;132:36–40. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1590/1516-3180.2014.1321566&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24474078&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000330853400007&link_type=ISI) 17. Humphries SE, Luong LA, Ogg MS, et al. The interleukin-6–174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J 2001;22:2243–52. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1053/euhj.2001.2678&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=11728144&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000172720800007&link_type=ISI) 18. Biswas S, Ghoshal PK, Mandal N. Synergistic effect of anti and pro-inflammatory cytokine genes and their promoter polymorphism with ST-elevation of myocardial infarction. Gene 2014;544:145–51. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.gene.2014.04.065&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24786212&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000337018500007&link_type=ISI) 19. Tang S, Yuan Y, He Y, et al. Genetic polymorphism of interleukin-6 influences susceptibility to HBV-related hepatocellular carcinoma in a male Chinese Han population. Hum Immunol 2014;75:297–301. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.humimm.2014.02.006&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24530755&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 20. Belluco C, Olivieri F, Bonafe M, et al. −174 G>C polymorphism of interleukin 6 gene promoter affects interleukin 6 serum level in patients with colorectal cancer. Clin Cancer Res 2003;9:2173–6. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6ODoiOS82LzIxNzMiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. Mandal S, Abebe F, Chaudhary J. −174 G/C polymorphism in the interleukin-6 promoter is differently associated with prostate cancer incidence depending on race. Genet Mol Res 2014;13:139–51. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.4238/2014.January.10.5&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24446297&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 22. Hefler LA, Grimm C, Ackermann S, et al. An interleukin-6 gene promoter polymorphism influences the biological phenotype of ovarian cancer. Cancer Res 2003;63:3066–8. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2My8xMi8zMDY2IjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 23. DeMichele A, Martin AM, Mick R, et al. Interleukin-6 −174G-->C polymorphism is associated with improved outcome in high-risk breast cancer. Cancer Res 2003;63:8051–6. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2My8yMi84MDUxIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 24. Cozen W, Gill PS, Ingles SA, et al. IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood 2004;103:3216–21. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTAzLzgvMzIxNiI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 25. Totaro F, Cimmino F, Pignataro P, et al. Impact of interleukin-6 −174 G>C gene promoter polymorphism on neuroblastoma. PLoS One 2013;8:e76810. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1371/journal.pone.0076810&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24204677&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 26. Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 2013;24:163–73. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cytogfr.2012.09.001&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=23107589&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000317445100007&link_type=ISI) 27. Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 2006;8 (Suppl 2):S2. 28. Fielding CA, McLoughlin RM, McLeod L, et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 2008;181:2189–95. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE4MS8zLzIxODkiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 29. Woodfin A, Voisin MB, Nourshargh S. Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol 2010;17:9–17. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1097/MOH.0b013e3283333930&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19864945&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 30. Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 2011;22:83–9. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cytogfr.2011.02.003&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21377916&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000292664900003&link_type=ISI) 31. Muraguchi A, Hirano T, Tang B, et al. The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. J Exp Med 1988;167:332–44. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamVtIjtzOjU6InJlc2lkIjtzOjk6IjE2Ny8yLzMzMiI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 2002;1592:313–21. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12421675&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000179178500010&link_type=ISI) 33. Hassan HT, Drexler HG. Interleukins and colony stimulating factors in human myeloid leukemia cell lines. Leuk Lymphoma 1995;20:1–15. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.3109/10428199509054748&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=8750618&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1995TN66300001&link_type=ISI) 34. Tartour E, Pere H, Maillere B, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011;30:83–95. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1007/s10555-011-9281-4&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21249423&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000288769700008&link_type=ISI) 35. Jones SA, Horiuchi S, Topley N, et al. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 2001;15:43–58. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1096/fj.99-1003rev&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=11149892&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000166312400013&link_type=ISI) 36. Smith AJ, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev 2009;20:43–59. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cytogfr.2008.11.006&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19038572&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000264673100005&link_type=ISI) 37. Moritz RL, Hall NE, Connolly LM, et al. Determination of the disulfide structure and N-glycosylation sites of the extracellular domain of the human signal transducer gp130. J Biol Chem 2001;276:8244–53. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjExOiIyNzYvMTEvODI0NCI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 38. Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012;23:85–97. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cytogfr.2012.04.001&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22595692&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000305710700002&link_type=ISI) 39. Chalaris A, Garbers C, Rabe B, et al. The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol 2011;90:484–94. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ejcb.2010.10.007&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21145125&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 40. Rose-John S, Scheller J, Elson G, et al. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006;80:227–36. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1189/jlb.1105674&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16707558&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000243015600003&link_type=ISI) 41. Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003;374 (Pt 1):1–20. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1042/BJ20030407&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12773095&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000184945000001&link_type=ISI) 42. Hennessy BT, Smith DL, Ram PT, et al. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005;4:988–1004. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/nrd1902&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16341064&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000233774900020&link_type=ISI) 43. Chien CM, Lin KL, Su JC, et al. Naphtho[1,2-b]furan-4,5-dione induces apoptosis of oral squamous cell carcinoma: involvement of EGF receptor/PI3K/Akt signaling pathway. Eur J Pharmacol 2010;636:52–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ejphar.2010.03.030&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20371243&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 44. Nakajima T, Kinoshita S, Sasagawa T, et al. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci USA 1993;90:2207–11. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI5MC82LzIyMDciO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 45. Tanaka T, Narazaki M, Kishimoto T. Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 2012;52:199–219. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1146/annurev-pharmtox-010611-134715&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21910626&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 46. Cacquevel M, Lebeurrier N, Cheenne S, et al. Cytokines in neuroinflammation and Alzheimer's disease. Curr Drug Targets 2004;5:529–34. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.2174/1389450043345308&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=15270199&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000222543200005&link_type=ISI) 47. Spirchez M, Samasca G, Iancu M, et al. Relation of interleukin-6, TNF-alpha and interleukin-1alpha with disease activity and severity in juvenile idiopathic arthritis patients. Clin Lab 2012;58:253–60. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22582498&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 48. Serada S, Fujimoto M, Mihara M, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2008;105:9041–6. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTA1LzI2LzkwNDEiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 49. Spooren A, Kolmus K, Laureys G, et al. Interleukin-6, a mental cytokine. Brain Res Rev 2011;67:157–83. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.brainresrev.2011.01.002&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21238488&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000292571800009&link_type=ISI) 50. Hingorani AD, Casas JP. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012;379:1214–24. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(12)60110-X&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22421340&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000302230400034&link_type=ISI) 51. Rincon M, Anguita J, Nakamura T, et al. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 1997;185:461–9. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamVtIjtzOjU6InJlc2lkIjtzOjk6IjE4NS8zLzQ2MSI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 52. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/nature04753&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16648838&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000237418800050&link_type=ISI) 53. Hirahara K, Ghoreschi K, Laurence A, et al. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev 2010;21:425–34. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cytogfr.2010.10.006&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21084214&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000286154700004&link_type=ISI) 54. Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001;14:705–14. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S1074-7613(01)00151-0&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=11420041&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000169495100007&link_type=ISI) 55. Kaplanski G, Marin V, Montero-Julian F, et al. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003;24:25–9. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S1471-4906(02)00013-3&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12495721&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000180215900011&link_type=ISI) 56. Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997;6:315–25. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S1074-7613(00)80334-9&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9075932&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1997XC61800011&link_type=ISI) 57. Chen Q, Fisher DT, Clancy KA, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 2006;7:1299–308. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/ni1406&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=17086187&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 58. Chen Q, Wang WC, Bruce R, et al. Central role of IL-6 receptor signal-transducing chain gp130 in activation of L-selectin adhesion by fever-range thermal stress. Immunity 2004;20:59–70. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S1074-7613(03)00358-3&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=14738765&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000221442200007&link_type=ISI) 59. Chomarat P, Banchereau J, Davoust J, et al. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000;1:510–14. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/82763&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=11101873&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000165724600015&link_type=ISI) 60. Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 2000;6:583–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/75068&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=10802717&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000086796200045&link_type=ISI) 61. Heikkila K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 2008;44:937–45. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ejca.2008.02.047&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18387296&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000256673900014&link_type=ISI) 62. Atsumi T, Singh R, Sabharwal L, et al. Inflammation amplifier, a new paradigm in cancer biology. Cancer Res 2014;74:8–14. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjY6Ijc0LzEvOCI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 63. Suchi K, Fujiwara H, Okamura S, et al. Overexpression of Interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res 2011;31:67–75. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6NzoiMzEvMS82NyI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 64. Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 2005;65:10794–800. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjExOiI2NS8yMy8xMDc5NCI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 65. Sierra A. Metastases and their microenvironments: linking pathogenesis and therapy. Drug Resist Updat 2005;8:247–57. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.drup.2005.07.001&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16095951&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 66. Santer FR, Malinowska K, Culig Z, et al. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 2010;17:241–53. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJjIjtzOjU6InJlc2lkIjtzOjg6IjE3LzEvMjQxIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 67. Nash MA, Ferrandina G, Gordinier M, et al. The role of cytokines in both the normal and malignant ovary. Endocr Relat Cancer 1999;6:93–107. [Abstract](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJjIjtzOjU6InJlc2lkIjtzOjY6IjYvMS85MyI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 68. Guo Y, Xu F, Lu T, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012 ;38:904–10. 69. Weidle UH, Klostermann S, Eggle D, et al. Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics 2010;7:287–302. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiY2dwIjtzOjU6InJlc2lkIjtzOjc6IjcvNi8yODciO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 70. van der Zee AG, de Cuyper EM, Limburg PC, et al. Higher levels of interleukin-6 in cystic fluids from patients with malignant versus benign ovarian tumors correlate with decreased hemoglobin levels and increased platelet counts. Cancer 1995;75:1004–9. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/1097-0142(19950215)75:4<1004::AID-CNCR2820750416>3.0.CO;2-G&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=7842401&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1995QG33600015&link_type=ISI) 71. Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008;13:7–9. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ccr.2007.12.020&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18167335&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000252295400004&link_type=ISI) 72. Zhang X, Zhang J, Wei H, et al. STAT3-decoy oligodeoxynucleotide inhibits the growth of human lung cancer via down-regulating its target genes. Oncol Rep 2007;17:1377–82. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=17487394&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000246774000015&link_type=ISI) 73. Darnell JE Jr.. STATs and gene regulation. Science 1997;277:1630–5. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIyNzcvNTMzMi8xNjMwIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 74. Wang XH, Liu BR, Qu B, et al. Silencing STAT3 may inhibit cell growth through regulating signaling pathway, telomerase, cell cycle, apoptosis and angiogenesis in hepatocellular carcinoma: potential uses for gene therapy. Neoplasma 2011;58:158–71. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access\_num=10.4149/neo_2011_02_158&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21275467&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000290695700011&link_type=ISI) 75. Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009;15:91–102. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ccr.2009.01.002&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19185844&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000263251400006&link_type=ISI) 76. Kiuchi N, Nakajima K, Ichiba M, et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999;189:63–73. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamVtIjtzOjU6InJlc2lkIjtzOjg6IjE4OS8xLzYzIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 77. Asgeirsson KS, Olafsdottir K, Jonasson JG, et al. The effects of IL-6 on cell adhesion and e-cadherin expression in breast cancer. Cytokine 1998;10:720–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1006/cyto.1998.0349&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9770334&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000076367700010&link_type=ISI) 78. Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 2008;118:3367–77. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1172/JCI35213&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18776941&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000259828600018&link_type=ISI) 79. Vendramini-Costa DB, Carvalho JE. Molecular Link Mechanisms between Inflammation and Cancer. Curr Pharm Des 2012;18:3831–52. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.2174/138161212802083707&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22632748&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 80. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;129:1261–74. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cell.2007.06.009&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=17604717&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000247911400013&link_type=ISI) 81. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606–19. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/nrg1879&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16847462&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000239118400013&link_type=ISI) 82. Liu W, Zhou Y, Reske SN, et al. PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res 2008;28 (6A):3613–19. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjI4LzZBLzM2MTMiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 83. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471–84. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.cell.2006.01.016&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=16469695&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000235464000011&link_type=ISI) 84. Boye K, Grotterod I, Aasheim HC, et al. Activation of NF-kappaB by extracellular S100A4: analysis of signal transduction mechanisms and identification of target genes. Int J Cancer 2008;123:1301–10. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/ijc.23617&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18548584&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000258480100010&link_type=ISI) 85. Yang XM, Wang YS, Zhang J, et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha and VEGF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci 2009;50:1873–9. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaW92cyI7czo1OiJyZXNpZCI7czo5OiI1MC80LzE4NzMiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 86. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 2007;1773:1213–26. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.bbamcr.2006.10.005&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=17112607&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000249086200006&link_type=ISI) 87. Lavoie JN, L'Allemain G, Brunet A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996;271:20608–16. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzEvMzQvMjA2MDgiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 88. Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995;42:459–67. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/mrd.1080420414&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=8607977&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1995TH64300013&link_type=ISI) 89. Kawada M, Yamagoe S, Murakami Y, et al. Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 1997;15:629–37. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/sj.onc.1201228&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9264403&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1997XP68300002&link_type=ISI) 90. Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 2011;25:1080–94. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/leu.2011.66&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21494257&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000292682600003&link_type=ISI) 91. Puchalski T, Prabhakar U, Jiao Q, et al. Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res 2010;16:1652–61. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMTYvNS8xNjUyIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 92. Morgan G. Future drug developments in multiple myeloma: an overview of novel lenalidomide-based combination therapies. Blood Rev 2010;24 (Suppl 1):S27–32. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S0268-960X(10)70006-0&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21126634&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000286542900005&link_type=ISI) 93. Nonomura N, Nakayama M, Takayama H, et al. [Molecular-targeted therapy for prostate cancer]. Hinyokika Kiyo 2008;54:63–6. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18260364&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 94. Arai Y, Nonomura N, Nakai Y, et al. The growth-inhibitory effects of dexamethasone on renal cell carcinoma in vivo and in vitro. Cancer Invest 2008;26:35–40. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1080/07357900701638418&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18181043&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000252315200006&link_type=ISI) 95. Liu Y, Liu A, Li H, et al. Celecoxib inhibits interleukin-6/interleukin-6 receptor-induced JAK2/STAT3 phosphorylation in human hepatocellular carcinoma cells. Cancer Prev Res (Phila) 2011;4:1296–305. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNhbnByZXZyZXMiO3M6NToicmVzaWQiO3M6ODoiNC84LzEyOTYiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 96. Nikitakis NG, Hamburger AW, Sauk JJ. The nonsteroidal anti-inflammatory drug sulindac causes down-regulation of signal transducer and activator of transcription 3 in human oral squamous cell carcinoma cells. Cancer Res 2002;62:1004–7. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjYyLzQvMTAwNCI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 97. Curiel-Lewandrowski C, Nijsten T, Gomez ML, et al. Long-term use of nonsteroidal anti-inflammatory drugs decreases the risk of cutaneous melanoma: results of a United States case-control study. J Invest Dermatol 2011;131:1460–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/jid.2011.58&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21390049&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000291644900013&link_type=ISI) 98. Slattery ML, Curtin K, Baumgartner R, et al. IL6, aspirin, nonsteroidal anti-inflammatory drugs, and breast cancer risk in women living in the southwestern United States. Cancer Epidemiol Biomarkers Prev 2007;16:747–55. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxNi80Lzc0NyI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 99. Berkel H, Holcombe RF, Middlebrooks M, et al. Nonsteroidal antiinflammatory drugs and colorectal cancer. Epidemiol Rev 1996;18:205–17. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1093/oxfordjournals.epirev.a017926&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=9021313&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1996WF37900008&link_type=ISI) 100.Zerbini LF, Tamura RE, Correa RG, et al. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-kappaB inhibitors in ovarian cancer therapy. PLoS One 2011;6:e24285. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1371/journal.pone.0024285&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21931671&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 101.Mahmud SM, Franco EL, Aprikian AG. Use of nonsteroidal anti-inflammatory drugs and prostate cancer risk: a meta-analysis. Int J Cancer 2010;127:1680–91. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/ijc.25186&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20091856&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000281340200019&link_type=ISI) 102.Oh SW, Myung SK, Park JY, et al. Aspirin use and risk for lung cancer: a meta-analysis. Ann Oncol 2011;22:2456–65. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1093/annonc/mdq779&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21385885&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000296292700016&link_type=ISI) 103.Tian W, Zhao Y, Liu S, et al. Meta-analysis on the relationship between nonsteroidal anti-inflammatory drug use and gastric cancer. Eur J Cancer Prev 2010;19:288–98. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1097/CEJ.0b013e328339648c&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20386312&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 104.Abnet CC, Freedman ND, Kamangar F, et al. Non-steroidal anti-inflammatory drugs and risk of gastric and oesophageal adenocarcinomas: results from a cohort study and a meta-analysis. Br J Cancer 2009;100:551–7. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/sj.bjc.6604880&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19156150&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000263074900018&link_type=ISI) 105.Tan XL, Reid Lombardo KM, Bamlet WR, et al. Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: a clinic-based case-control study. Cancer Prev Res (Phila) 2011;4:1835–41. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNhbnByZXZyZXMiO3M6NToicmVzaWQiO3M6OToiNC8xMS8xODM1IjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 106.Gu Y, Lee HM, Sorsa T, et al. Non-antibacterial tetracyclines modulate mediators of periodontitis and atherosclerotic cardiovascular disease: a mechanistic link between local and systemic inflammation. Pharmacol Res 2011;64:573–9. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.phrs.2011.06.023&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21771657&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 107.Shieh JM, Huang TF, Hung CF, et al. Activation of c-Jun N-terminal kinase is essential for mitochondrial membrane potential change and apoptosis induced by doxycycline in melanoma cells. Br J Pharmacol 2010;160:1171–84. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1111/j.1476-5381.2010.00746.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20590610&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000278517200014&link_type=ISI) 108.Pourgholami MH, Mekkawy AH, Badar S, et al. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol Oncol 2012;125:433–40. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ygyno.2012.01.006&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22252097&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 109.Pourgholami MH, Ataie-Kachoie P, Badar S, et al. Minocycline inhibits malignant ascites of ovarian cancer through targeting multiple signaling pathways. Gynecol Oncol 2013;129:113–19. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ygyno.2012.12.031&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=23274564&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 110.Ataie-Kachoie P, Badar S, Morris DL, et al. Minocycline targets the NF-kappaB Nexus through suppression of TGF-beta1-TAK1-IkappaB signaling in ovarian cancer. Mol Cancer Res 2013;11:1279–91. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibW9sY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiIxMS8xMC8xMjc5IjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 111.Dhanesuan N, Sharp JA, Blick T, et al. Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Res Treat 2002;75:73–85. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1023/A:1016536725958&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=12500936&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000177099900008&link_type=ISI) 112.Selzer MG, Zhu B, Block NL, et al. CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann N Y Acad Sci 1999;878:678–82. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1111/j.1749-6632.1999.tb07760.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=10415806&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000081587000091&link_type=ISI) 113.Bayliss TJ, Smith JT, Schuster M, et al. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther 2011;11:1663–8. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1517/14712598.2011.627850&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21995322&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 114.Ara T, Declerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 2010;46:1223–31. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ejca.2010.02.026&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20335016&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000277906900007&link_type=ISI) 115.Szepietowski JC, Nilganuwong S, Wozniacka A, et al. Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum 2013;65:2661–71. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=23896980&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000325136600022&link_type=ISI) 116.Smolen JS, Weinblatt ME, Sheng S, et al. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis 2014;73:1616–25. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6ImFubnJoZXVtZGlzIjtzOjU6InJlc2lkIjtzOjk6IjczLzkvMTYxNiI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 117.van Rhee F, Fayad L, Voorhees P, et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J Clin Oncol 2010;28:3701–8. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyOC8yMy8zNzAxIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 118.Voorhees PM, Chen Q, Kuhn DJ, et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007;13:6469–78. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjEzLzIxLzY0NjkiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 119.Voorhees PM, Chen Q, Small GW, et al. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009;145:481–90. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1111/j.1365-2141.2009.07647.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19344406&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 120.Hunsucker SA, Magarotto V, Kuhn DJ, et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011;152:579–92. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1111/j.1365-2141.2010.08533.x&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21241278&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 121.Dorff TB, Goldman B, Pinski JK, et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 2010;16:3028–34. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjE2LzExLzMwMjgiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 122.Karkera J, Steiner H, Li W, et al. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate 2011;71:1455–65. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/pros.21362&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21321981&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000294443700010&link_type=ISI) 123.Fizazi K, De Bono JS, Flechon A, et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer 2012;48:85–93. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ejca.2011.10.014&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=22129890&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 124.Coward J, Kulbe H, Chakravarty P, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011;17:6083–96. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjE3LzE4LzYwODMiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 125.Weissglas M, Schamhart D, Lowik C, et al. Hypercalcemia and cosecretion of interleukin-6 and parathyroid hormone related peptide by a human renal cell carcinoma implanted into nude mice. J Urol 1995;153 (3 Pt 1):854–7. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S0022-5347(01)67735-8&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=7861550&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1995QF63000093&link_type=ISI) 126.Song L, Rawal B, Nemeth JA, et al. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther 2011;10:481–94. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6Im1vbGNhbnRoZXIiO3M6NToicmVzaWQiO3M6ODoiMTAvMy80ODEiO3M6NDoiYXRvbSI7czoyNToiL2pjbGlucGF0aC82Ny8xMS85MzIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 127.Illei GG, Shirota Y, Yarboro CH, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum 2010;62:542–52. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/art.27221&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20112381&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000279432100033&link_type=ISI) 128.Leffers HC, Ostergaard M, Glintborg B, et al. Efficacy of abatacept and tocilizumab in patients with rheumatoid arthritis treated in clinical practice: results from the nationwide Danish DANBIO registry. Ann Rheum Dis 2011;70:1216–22. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6ImFubnJoZXVtZGlzIjtzOjU6InJlc2lkIjtzOjk6IjcwLzcvMTIxNiI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 129.Burmester GR, Feist E, Kellner H, et al. Effectiveness and safety of the interleukin 6-receptor antagonist tocilizumab after 4 and 24 weeks in patients with active rheumatoid arthritis: the first phase IIIb real-life study (TAMARA). Ann Rheum Dis 2011;70:755–9. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6ImFubnJoZXVtZGlzIjtzOjU6InJlc2lkIjtzOjg6IjcwLzUvNzU1IjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 130.Takeuchi T, Tanaka Y, Amano K, et al. Clinical, radiographic and functional effectiveness of tocilizumab for rheumatoid arthritis patients--REACTION 52-week study. Rheumatology (Oxford) 2011;50:1908–15. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1093/rheumatology/ker221&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21752873&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000295172600025&link_type=ISI) 131.Yokota S, Miyamae T, Imagawa T, et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 2005;52:818–25. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/art.20944&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=15751095&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000227570600019&link_type=ISI) 132.Yokota S, Imagawa T, Mori M, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 2008;371:998–1006. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(08)60454-7&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18358927&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000254206000028&link_type=ISI) 133.Imagawa T, Yokota S, Mori M, et al. Safety and efficacy of tocilizumab, an anti-IL-6-receptor monoclonal antibody, in patients with polyarticular-course juvenile idiopathic arthritis. Mod Rheumatol 2012;22:109–15. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1007/s10165-011-0481-0&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21667343&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 134.Nishimoto N, Nakahara H, Yoshio-Hoshino N, et al. Successful treatment of a patient with Takayasu arteritis using a humanized anti-interleukin-6 receptor antibody. Arthritis Rheum 2008;58:1197–200. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/art.23373&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=18383395&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000255345200033&link_type=ISI) 135.Seitz M, Reichenbach S, Bonel HM, et al. Rapid induction of remission in large vessel vasculitis by IL-6 blockade. A case series. Swiss Med Wkly 2011;141:w13156. [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21243547&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) 136.Shima Y, Kuwahara Y, Murota H, et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford) 2010;49:2408–12. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1093/rheumatology/keq275&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=20819796&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000284432800025&link_type=ISI) 137.Ito H, Takazoe M, Fukuda Y, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 2004;126:989–96; discussion 47. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1053/j.gastro.2004.01.012&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=15057738&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000220688100011&link_type=ISI) 138.Nishimoto N, Kanakura Y, Aozasa K, et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 2005;106:2627–32. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTA2LzgvMjYyNyI7czo0OiJhdG9tIjtzOjI1OiIvamNsaW5wYXRoLzY3LzExLzkzMi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 139.Shinriki S, Jono H, Ueda M, et al. Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol 2011;225:142–50. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/path.2935&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21710490&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000294354100015&link_type=ISI) 140.Kudo M, Jono H, Shinriki S, et al. Antitumor effect of humanized anti-interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. Laboratory investigation. J Neurosurg 2009;111:219–25. [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.3171/2008.12.JNS081284&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19326989&link_type=MED&atom=%2Fjclinpath%2F67%2F11%2F932.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000268341100003&link_type=ISI) 141.Yoshio-Hoshino N, Adachi Y, Aoki C, et al. Establishment of a new interleukin-6 (IL-6) receptor inhibitor applicable to the gene therapy for IL-6-dependent tumor. Cancer Res 2007;67:871–5. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjg6IjY3LzMvODcxIjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 142.Adachi Y, Yoshio-Hoshino N, Aoki C, et al. VEGF targeting in mesotheliomas using an interleukin-6 signal inhibitor based on adenovirus gene delivery. Anticancer Res 2010;30:1947–52. [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMzAvNi8xOTQ3IjtzOjQ6ImF0b20iO3M6MjU6Ii9qY2xpbnBhdGgvNjcvMTEvOTMyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==)