J Clin Pathol

Supplementary Figures

Supplementary Figure 1. Flow diagram of the study for the TCGA PanCancer Atlas cohorts (A) and the Niguarda Cancer Center cohorts (B).

Keys. GI = gastrointestinal, N = numbers of patients.

Keys. GI = gastrointestinal, NGS= Next generation sequencing, N = numbers of patients.

Supplementary Figure 2. Enrichment for gene deletions across chromosome 9p in the *MTAP* loss population from the TCGA PanCancer Atlas Studies.

Supplementary Figure 3. Gene expression is significantly related to MTAP copy number in TCGA

PanCancer Atlas Studies analysis.

Box plot representing the mRNA expression levels of *MTAP* across different copy number variations. Expression values are first standardized by computing Z-scores, indicating how many standard deviations each data point is from the mean of the entire cohort. Then, data are transformed using a base-2 logarithm to represent fold changes to enhance visual representation.

Supplementary Figure 4. Survival analysis of *MTAP* loss *cases* vs *MTAP* unaltered controls from the TCGA PanCancer Atlas Studies.

A-B. Progression-free survival analysis of *MTAP* loss vs *MTAP* unaltered cases. **C.** Cox proportional hazards regression models with multiple predictors (*MTAP* status and primary tumor site). **D**. Progression-free survival analysis according to primary tumor site.

Supplementary Figure 5. Survival analysis of *MTAP* loss *cases* vs *MTAP* unaltered controls for separate tumor types from the TCGA PanCancer Atlas Studies.

A-D. Progression-free survival analysis of *MTAP* loss vs *MTAP* unaltered cases, for pancreatic (A), biliary tract (B), gastroesophageal
(C) and colorectal cancer (D). E-H. Overall survival analysis of *MTAP* loss vs *MTAP* unaltered cases, for pancreatic (A), biliary tract
(B), gastroesophageal (C) and colorectal cancer (D).

Supplementary Tables

Supplementary Table 1. Patient characteristics and MTAP alteration prevalence in the overall

cohort of GI cancer patients from the TCGA PanCancer Atlas Studies.

Number of patients	1363				
Age (median[IQR])	66 [57-74]				
Sex (%)					
Male	823 (60.4)				
Female	538 (39.5)				
NA	2 (0.1)				
Cancer type (%)					
Gastroesophageal	616 (45.2)				
Stomach	434 (70.5)^				
Esophageal	182 (29.5)^				
Squamous carcinomas	95 (52.2) ^^				
Adenocarcinomas	87 (47.8) ^^				
Colorectal	532 (39.0)				
Pancreatic	179 (13.1)				
Biliary	36 (2.6)				
Tumor histology (%)					
Adenocarcinoma	1106 (81.1)				
Mucinous adenocarcinoma	77 (5.7)				
Signet ring carcinoma	85 (6.2)				
Squamous carcinoma	95 (7.0)				
Stage at diagnosis (%)					
Non metastatic	1020 (74.8)				
Metastatic	117 (8.6)				
NA	226 (16.6)				
Tumor mutational burden* (median[IQR])	3.2 [2-5.2]				
Microsatellite instability** (%)	169 (12.4)				
MTAP status (%)					
Copy number loss	128 (9.4)				
Copy number gain	4 (0.3)				
Mutation	7 (0.6***)				
Wild type	1224 (89.8)				
MTAP loss prevalence by cancer type (%)					
Gastroesophageal	78/616 (12.7)				
Stomach	40/434 (9.2)^				
Esophageal	38/182 (20.9)^^				
Pancreatic	40/179 (22.3)				
Colorectal	6/532 (1.1)				
Biliary	4/36 (11.1)				

*Nonsynonymous TMB

**According to the MANTIS score with a threshold of 0.4

***MTAP mutations were found in CRC (N=4) and GEC (N=3)

^ Percentages referred to the total of gastroesophageal carcinomas

^^ Percentages referred to the total of esophageal carcinomas

Supplementary Table 2. MTAP alteration prevalence by cancer type and subclassification of

gastroesophageal in the Niguarda cohort.

Number of patients	508		
MTAP alterations (%)	27 (5.3)		
MTAP alteration prevalence by cancer type* (%)			
Gastroesophageal	4/47 (8.5)		
Junctional	11 (23.4)^		
Stomach	31 (66.0)^		
NA	5 (10.6)^		
Pancreatic	12/80 (15)		
Colorectal	7/329 (2.1)		
Biliary	2/36 (5.5)		
Others	2/16 (12.5)		
MTAP alteration type (%)			
MTAP loss	22/27 (81.5)		
MTAP mutation*	5/27 (18.5%)		

*CRC was the only tumor type harbouring *MTAP* mutations, while all other alterations reported in the table were *MTAP* loss ^Percentages referred to the total of gastroesophageal carcinomas

NA: not available data

Supplementary	/ Table 3.	Ongoing cli	inical trials	targeting	MTAP	altered tu	imors.
• • • • • • • • • • • • • • • • • • •			initial citato				

Trial	Study type	Sponsor	Tumor site	Treatment	Mechanism of action	Status
NCT05975073	Phase 1/2	Amgen	Solid tumors	AMG 193 +	PRMT5 inhibitor +	Not vet
	111000 272	,		IDE397	MAT2A inhibitor	recruiting
NCT05094336	Phase 1/2	Amgen	Solid tumors	AMG 193 +/- docetaxel	PRMT5 inhibitor	Recruiting
NCT04794699	Phase 1	Ideaya Biosciences	Solid tumors	IDE397 +/- CT	MAT2A inhibitor	Recruiting
NCT04089449	Phase 1	Prelude Therapeutics	Solid tumors CNS lymphoma High-grade gliomas	PRT811	PRMT5 inhibitor	Recruiting
NCT05275478	Phase 1	NEXT Oncology	Solid tumors	TNG908	PRMT5 inhibitor	Recruiting
NCT05732831	Phase 1/2	Tango Therapeutics	Solid tumors	TNG462	PRMT5 inhibitor	Recruiting
NCT05245500	Phase 1/2	Mirati Therapeutics Inc.	Solid tumors	MRTX1719	PRMT5-MTA inhibitor	Recruiting
NCT03435250	Phase 1	IRIS	Solid tumors Lymphoma	AG-270 +/- taxane- based CT	MAT2A inhibitor	Terminated (Strategic reasons)
NCT00062283	Phase 2	NCI	Lung Cancer Mesothelioma Pancreatic Cancer Sarcoma	L-alanosine	Purine Synthesis Inhibitor	Completed
NCT00075894	Phase 1/2	NCI	CNS tumors	L-alanosine	Purine Synthesis Inhibitor	Completed
NCT03666988	Phase 1	GlaxoSmithKline	Solid tumors DLBCL	GSK336871 5	PRMT inhibitor	Terminated (overall benefit- risk profile did not support continuation of the study)
NCT05312372	Phase 1/2	IRIS	Esophageal SCC	AG-270 + paclitaxel	MAT2A inhibitor	Withdrawn (Strategic reasons)
NCT00078468	Phase 2	Pfizer	CRC	AG-2037 (pelitrexol)	GARFT Inhibitor	Completed

Abbreviations: PRMT5: protein arginine methyltransferase 5; MAT2A: methionine adenosyltransferase-2a, MTA: Methylthioadenosine, CT: chemotherapy; DLBCL: diffuse large B-cell lymphoma; SCC: squamous cell carcinoma; CRC: colorectal cancer; GARFT: glycinamide ribonucleotide formyltransferase; IRIS: institut de recherches internationales servier, NCI: national cancer institute